System-Architektur - PointCab Webexport

Server

Diese Dokumentation beschreibt die technische Architektur des Systems.

#1 Ubersicht

1 Browser Nginx Proxy [<—1] NestJS
0

(Client) 1 Il Manager (443) [Il (Port 3000)

0

[0

[l PostgresqL []] 0
[l (pointcab db)[]] 0
|

Filesystem [[]
(uploads/) []]

Verzeichnisstruktur

/var/www/pointcab_webexport server/
[FH nodejs_space/ # Haupt-Anwendung
[FH src/
[controllers/ # HTTP-Endpunkte
[l [admin.controller.ts
[l [projects.controller.ts
[l ™= root.controller.ts
[+ services/ # Business-Logik
[H admin.service.ts
[projects.service.ts
[FH upload.service.ts
[prisma.service.ts
prisma/
[schema.prisma # Datenbank-Schema
dist/ # Kompilierter Code
uploads/ # Hochgeladene Projekte
package.json
tsconfig.json
.env # Konfiguration
ackups/ # Deployment-Backups

mEEEEEEEEEEEEEEEEE

o

X Komponenten

1. Controllers
ProjectsController (projects.controller.ts)

Verantwortlich fur:
- Projekt-Anzeige (GET /:shareId/view)

- Passwort-Authentifizierung (POST /:shareId/auth)
- Asset-Serving (GET /:shareld/*)

Wichtige Funktionen:

// Projekt anzeigen
@Get(':shareld/view')
async viewProject()

// Assets laden (JS, CSS, Bilder)
@Get(':shareld/*")
async getProjectResource()

// Passwort-Seite
@Get(':shareld')
async showPasswordPage()

AdminController (admin.controller.ts)

Verantwortlich fur:

- Dashboard (GET /admin/dashboard)
- Projekt-Verwaltung (CRUD)

- RAR-Entpacken

- Datei-Upload

2. Services
ProjectsService (projects.service.ts)

Kernfunktionen:

1. Web-Subfolder-Erkennung:
typescript
detectWebSubfolder(projectPath: string): string | null
// Erkennt z.B. "Web 0 web/" Ordner

2. Asset-Pfad-Auflésung:
typescript
resolveAssetPath(projectPath: string, assetPath: string): string
// Lost relative Pfade auf

3. Base-Tag-Injection:
typescript
injectBaseTag(html: string, shareld: string, htmlPath?: string): string
// Fugt <base href> fir korrekte Asset-Pfade ein

AdminService (admin.service.ts)
Kernfunktionen:
1. RAR-Entpacken:
typescript

extractRar(projectId: string, rarPath: string): Promise<void>

// Verwendet spawn() fir groBe Dateien

2. HTML-Erkennung:
typescript

findHtmlFiles(projectPath: string): stringl[]
// Findet alle HTML-Dateien im Projekt

3. Multi-HTML-Logik:
typescript
processExtractedProject(projectId: string): Promise<void>
// Setzt htmlfilename = null bei mehreren HTMLs

UploadService (upload.service.ts)

Kernfunktionen:

- ZIP/RAR-Upload verarbeiten

- Projekt in Datenbank erstellen
- Multi-HTML-Erkennung

3. Datenbank-Schema

model project {

id String [did [@default(uuid())
name String [dunique

shareid String [dunique

password String // Klartext (kein Hash!)

htmlfilename String[?] // NULL bei Multi-HTML
uploaddate DateTime [gddefault(now())
expirydate DateTime[?]

createdat DateTime [ddefault(now())

Wichtig: htmlfilename ist nullable fur Multi-HTML-Unterstutzung!
£=] Request-Flow
Projekt anzeigen

1. Browser: GET /abcl23/view

2. Nginx Proxy: Weiterleitung an :3000

=1

3. ProjectsController.viewProject()

Projekt aus DB laden
Passwort-Check (Cookie)
htmlfilename prifen

[H null [HTML-Auswahl-Seite
[vorhanden 5 HTML laden
Web-Subfolder erkennen
Base-Tag injecten

HTML zuruckgeben

SITM=E=mmmE

SN
o

rowser: Rendert HTML

=1

5. Browser: Ladt Assets (GET /abcl23/js/main.js)

=1

6. ProjectsController.getProjectResource()
[H pfad auflésen (mit Subfolder)
[Datei zuriickgeben

RAR entpacken

1. Admin: POST /admin/projects/:id/extract-rar

2. AdminController.extractRar()

3. AdminService.extractRar()
[H Platzhalter-HTML 18schen
[H RAR entpacken (spawn)
[H HTML-Dateien finden
[H Web-Subfolder erkennen

htmlfilename setzen

H

I [H 1 HTML [Dateiname
I [>1 HTML [null

[DB aktualisieren

L Sicherheit

Passwort-Handling

* Passworter werden als Klartext gespeichert
e Kein bcrypt-Hashing (bewusste Entscheidung fur einfache Verwaltung)
* Cookie-basierte Session nach erfolgreicher Authentifizierung

Pfad-Sicherheit

// Pfad-Normalisierung verhindert Directory Traversal
const safePath = path.normalize(requestedPath).replace(/~(\.\.\/)+/, '');

Datei-Zugriff
* Nur Dateien innerhalb des Projekt-Verzeichnisses

¢ Keine direkten Pfade vom Client
e MIME-Type-Validierung

| Technologie-Stack

Schicht

Runtime
Framework
Sprache
Datenbank

ORM

Process Manager
Reverse Proxy

0sS

“, Konfiguration

Umgebungsvariablen (

PORT=3000
NODE_ENV=production

DATABASE URL="postgresql://...

UPLOAD DIR=/path/to/uploads
SESSION SECRET=...
ADMIN PASSWORD=. ..

PM2 Konfiguration

// ecosystem.config.js
module.exports = {

apps: [{
name: 'pointcab-server',
script: './dist/main.js',

instances: 1,
autorestart: true,
max_memory restart:
11
I3

|1G|

~/ Performance

Optimierungen

Technologie

Node.js

Nest)S

TypeScript
PostgreSQL

Prisma

PM2

Nginx Proxy Manager

Ubuntu

.env)

Server-Port

Umgebung

" # DB-Verbindung

Upload-Verzeichnis

Session-Verschliisselung
Admin-Zugang

1. Spawn statt Exec: FUr RAR-Entpacken (kein Buffer-Limit)

2. Lazy Loading: Assets werden

on-demand geladen

3. PM2 Clustering: Mdglich fur Skalierung

Version

18.x LTS

10.x

Latest

24.04 LTS

Limits
e Max Upload: 500 MB (konfigurierbar)

e Max Projekte: Unbegrenzt (Speicherplatz-abhangig)
* Gleichzeitige Verbindungen: Node.js Standard

Siehe auch: CHANGELOG.md (CHANGELOG.md)

file:///home/ubuntu/pointcab_webexport_git/docs/CHANGELOG.md
file:///home/ubuntu/pointcab_webexport_git/docs/CHANGELOG.md

	System-Architektur - PointCab Webexport Server
	🏗️ Übersicht
	📂 Verzeichnisstruktur
	🛠️ Komponenten
	1. Controllers
	ProjectsController (projects.controller.ts)
	AdminController (admin.controller.ts)

	2. Services
	ProjectsService (projects.service.ts)
	AdminService (admin.service.ts)
	UploadService (upload.service.ts)

	3. Datenbank-Schema

	🔄 Request-Flow
	Projekt anzeigen
	RAR entpacken

	🔐 Sicherheit
	Passwort-Handling
	Pfad-Sicherheit
	Datei-Zugriff

	📊 Technologie-Stack
	🔧 Konfiguration
	Umgebungsvariablen (.env)
	PM2 Konfiguration

	📈 Performance
	Optimierungen
	Limits

