
System-Architektur - PointCab Webexport
Server

Diese Dokumentation beschreibt die technische Architektur des Systems.

🏗️ Übersicht

┌─────────────────┐ ┌───────────────────┐ ┌─────────────────┐
│ Browser │◄───►│ Nginx Proxy │◄───►│ NestJS │
│ (Client) │ │ Manager (443) │ │ (Port 3000) │
└─────────────────┘ └───────────────────┘ └────────┬────────┘

│
┌─────────────────┴─────────────────┐
│ │

┌───────┴───────┐ ┌───────┴───────┐
│ PostgreSQL │ │ Filesystem │
│ (pointcab_db)│ │ (uploads/) │
└────────────────┘ └────────────────┘

📂 Verzeichnisstruktur

/var/www/pointcab_webexport_server/
├── nodejs_space/ # Haupt-Anwendung
│ ├── src/
│ │ ├── controllers/ # HTTP-Endpunkte
│ │ │ ├── admin.controller.ts
│ │ │ ├── projects.controller.ts
│ │ │ └── root.controller.ts
│ │ └── services/ # Business-Logik
│ │ ├── admin.service.ts
│ │ ├── projects.service.ts
│ │ ├── upload.service.ts
│ │ └── prisma.service.ts
│ ├── prisma/
│ │ └── schema.prisma # Datenbank-Schema
│ ├── dist/ # Kompilierter Code
│ ├── uploads/ # Hochgeladene Projekte
│ ├── package.json
│ ├── tsconfig.json
│ └── .env # Konfiguration
└── backups/ # Deployment-Backups

🛠️ Komponenten

1. Controllers

ProjectsController (projects.controller.ts)

Verantwortlich für:

- Projekt-Anzeige (GET /:shareId/view)

1

- Passwort-Authentifizierung (POST /:shareId/auth)

- Asset-Serving (GET /:shareId/*)

Wichtige Funktionen:

// Projekt anzeigen
@Get(':shareId/view')
async viewProject()

// Assets laden (JS, CSS, Bilder)
@Get(':shareId/*')
async getProjectResource()

// Passwort-Seite
@Get(':shareId')
async showPasswordPage()

AdminController (admin.controller.ts)

Verantwortlich für:

- Dashboard (GET /admin/dashboard)

- Projekt-Verwaltung (CRUD)

- RAR-Entpacken

- Datei-Upload

2. Services

ProjectsService (projects.service.ts)

Kernfunktionen:

Web-Subfolder-Erkennung:

typescript

 detectWebSubfolder(projectPath: string): string | null

 // Erkennt z.B. "Web_0_web/" Ordner

Asset-Pfad-Auflösung:

typescript

 resolveAssetPath(projectPath: string, assetPath: string): string

 // Löst relative Pfade auf

Base-Tag-Injection:

typescript

 injectBaseTag(html: string, shareId: string, htmlPath?: string): string

 // Fügt <base href> für korrekte Asset-Pfade ein

AdminService (admin.service.ts)

Kernfunktionen:

RAR-Entpacken:

typescript

 extractRar(projectId: string, rarPath: string): Promise<void>

 // Verwendet spawn() für große Dateien

HTML-Erkennung:

typescript

1.

2.

3.

1.

2.

2

 findHtmlFiles(projectPath: string): string[]

 // Findet alle HTML-Dateien im Projekt

Multi-HTML-Logik:

typescript

 processExtractedProject(projectId: string): Promise<void>

 // Setzt htmlfilename = null bei mehreren HTMLs

UploadService (upload.service.ts)

Kernfunktionen:

- ZIP/RAR-Upload verarbeiten

- Projekt in Datenbank erstellen

- Multi-HTML-Erkennung

3. Datenbank-Schema

model project {
id String @id @default(uuid())
name String @unique
shareid String @unique
password String // Klartext (kein Hash!)
htmlfilename String? // NULL bei Multi-HTML
uploaddate DateTime @default(now())
expirydate DateTime?
createdat DateTime @default(now())

}

Wichtig: htmlfilename ist nullable für Multi-HTML-Unterstützung!

🔄 Request-Flow

Projekt anzeigen

1. Browser: GET /abc123/view
↓

2. Nginx Proxy: Weiterleitung an :3000
↓

3. ProjectsController.viewProject()
│
├─ Projekt aus DB laden
├─ Passwort-Check (Cookie)
├─ htmlfilename prüfen
│ ├─ null → HTML-Auswahl-Seite
│ └─ vorhanden → HTML laden
├─ Web-Subfolder erkennen
├─ Base-Tag injecten
└─ HTML zurückgeben
↓

4. Browser: Rendert HTML
↓

5. Browser: Lädt Assets (GET /abc123/js/main.js)
↓

6. ProjectsController.getProjectResource()
├─ Pfad auflösen (mit Subfolder)
└─ Datei zurückgeben

3.

3

RAR entpacken

1. Admin: POST /admin/projects/:id/extract-rar
↓

2. AdminController.extractRar()
↓

3. AdminService.extractRar()
├─ Platzhalter-HTML löschen
├─ RAR entpacken (spawn)
├─ HTML-Dateien finden
├─ Web-Subfolder erkennen
├─ htmlfilename setzen
│ ├─ 1 HTML → Dateiname
│ └─ >1 HTML → null
└─ DB aktualisieren

🔐 Sicherheit

Passwort-Handling

Passwörter werden als Klartext gespeichert

Kein bcrypt-Hashing (bewusste Entscheidung für einfache Verwaltung)

Cookie-basierte Session nach erfolgreicher Authentifizierung

Pfad-Sicherheit

// Pfad-Normalisierung verhindert Directory Traversal
const safePath = path.normalize(requestedPath).replace(/^(\.\.\/)+/, '');

Datei-Zugriff

Nur Dateien innerhalb des Projekt-Verzeichnisses

Keine direkten Pfade vom Client

MIME-Type-Validierung

•

•

•

•

•

•

4

📊 Technologie-Stack

Schicht Technologie Version

Runtime Node.js 18.x LTS

Framework NestJS 10.x

Sprache TypeScript 5.x

Datenbank PostgreSQL 16.x

ORM Prisma 5.x

Process Manager PM2 5.x

Reverse Proxy Nginx Proxy Manager Latest

OS Ubuntu 24.04 LTS

🔧 Konfiguration

Umgebungsvariablen (.env)

PORT=3000 # Server-Port
NODE_ENV=production # Umgebung
DATABASE_URL="postgresql://..." # DB-Verbindung
UPLOAD_DIR=/path/to/uploads # Upload-Verzeichnis
SESSION_SECRET=... # Session-Verschlüsselung
ADMIN_PASSWORD=... # Admin-Zugang

PM2 Konfiguration

// ecosystem.config.js
module.exports = {

apps: [{
name: 'pointcab-server',
script: './dist/main.js',
instances: 1,
autorestart: true,
max_memory_restart: '1G'

}]
};

📈 Performance

Optimierungen

Spawn statt Exec: Für RAR-Entpacken (kein Buffer-Limit)

Lazy Loading: Assets werden on-demand geladen

PM2 Clustering: Möglich für Skalierung

1.

2.

3.

5

Limits

Max Upload: 500 MB (konfigurierbar)

Max Projekte: Unbegrenzt (Speicherplatz-abhängig)

Gleichzeitige Verbindungen: Node.js Standard

Siehe auch: CHANGELOG.md (CHANGELOG.md)

•

•

•

6

file:///home/ubuntu/pointcab_webexport_git/docs/CHANGELOG.md
file:///home/ubuntu/pointcab_webexport_git/docs/CHANGELOG.md

	System-Architektur - PointCab Webexport Server
	🏗️ Übersicht
	📂 Verzeichnisstruktur
	🛠️ Komponenten
	1. Controllers
	ProjectsController (projects.controller.ts)
	AdminController (admin.controller.ts)

	2. Services
	ProjectsService (projects.service.ts)
	AdminService (admin.service.ts)
	UploadService (upload.service.ts)

	3. Datenbank-Schema

	🔄 Request-Flow
	Projekt anzeigen
	RAR entpacken

	🔐 Sicherheit
	Passwort-Handling
	Pfad-Sicherheit
	Datei-Zugriff

	📊 Technologie-Stack
	🔧 Konfiguration
	Umgebungsvariablen (.env)
	PM2 Konfiguration

	📈 Performance
	Optimierungen
	Limits

