
PointCab Renamer - Deployment-Anleitung

Version 4.2.1 | Datum: 16. Januar 2026

Build-Status (Testergebnisse 2026-01-16)

Build-Methode Status Hinweise

build_windows.bat ✅ Funktioniert Empfohlen auf Windows

build_linux.sh ✅ Getestet Funktioniert auf Ubuntu

20.04+

build_windows_wine.sh ⚠️ Experimentell Fehlschläge auf Headless-

Servern möglich

build_windows_on_linux.sh ⚠️ Docker Nicht in Docker-in-Docker

möglich

Übersicht

Diese Anleitung beschreibt, wie Sie aus dem Python-Quellcode ausführbare Dateien für Windows (.exe)

und Ubuntu (Binary) erstellen.

Voraussetzungen

Benötigte Software

Komponente Windows Ubuntu

Python 3.8+ 3.8+

PyInstaller 5.0+ 5.0+

tkinter (in Python enthalten) python3-tk

Installation der Voraussetzungen

Windows

Python installieren:

- Laden Sie Python von https://www.python.org/downloads/ herunter

- Bei der Installation: ☑ “Add Python to PATH” aktivieren

1.

1

PyInstaller installieren:

cmd

 pip install pyinstaller

Ubuntu

Python und tkinter installieren:

bash

 sudo apt update

 sudo apt install python3 python3-pip python3-tk

PyInstaller installieren:

bash

 pip3 install pyinstaller

Windows-Build (.exe)

Automatisch (empfohlen)

Öffnen Sie eine Eingabeaufforderung (cmd)

Navigieren Sie zum Projektordner:

cmd

 cd C:\Pfad\zum\pointcab_renamer

Führen Sie das Build-Skript aus:

cmd

 build_windows.bat

Die fertige .exe finden Sie im Ordner dist\pointcab_renamer\

Manuell

Öffnen Sie eine Eingabeaufforderung

Navigieren Sie zum Quellcode-Ordner

Führen Sie PyInstaller aus:

cmd

 pyinstaller --onefile --windowed --name "PointCab_Renamer" ^
 --add-data

"cluster_cleanup.txt;." ^
 pointcab_renamer.py

Die .exe befindet sich in dist\PointCab_Renamer.exe

PyInstaller-Optionen erklärt

Option Beschreibung

--onefile Alles in eine einzige .exe packen

--windowed Kein Konsolenfenster anzeigen

--name Name der Ausgabedatei

--add-data Zusätzliche Dateien einbinden

--icon (Optional) Icon-Datei (.ico)

2.

1.

2.

1.

2.

3.

4.

1.

2.

3.

4.

2

Bekannte Probleme unter Windows

Problem: Antivirus blockiert die .exe

Lösung: Die erstellte .exe als Ausnahme hinzufügen oder signieren.

Problem: “DLL nicht gefunden”

Lösung: Visual C++ Redistributable installieren.

Ubuntu-Build (Binary)

Automatisch (empfohlen)

Öffnen Sie ein Terminal

Navigieren Sie zum Projektordner:

bash

 cd /pfad/zum/pointcab_renamer

Machen Sie das Build-Skript ausführbar und führen Sie es aus:

bash

 chmod +x build_linux.sh

 ./build_linux.sh

Das fertige Binary finden Sie im Ordner dist/

Manuell

Öffnen Sie ein Terminal

Navigieren Sie zum Quellcode-Ordner

Führen Sie PyInstaller aus:

bash

 pyinstaller --onefile --name "pointcab_renamer" \

 --add-data "cluster_cleanup.txt:." \

 pointcab_renamer.py

Das Binary befindet sich in dist/pointcab_renamer

Machen Sie es ausführbar:

bash

 chmod +x dist/pointcab_renamer

Bekannte Probleme unter Ubuntu

Problem: “No display name and no $DISPLAY environment variable”

Lösung: Das Binary muss in einer grafischen Umgebung gestartet werden, nicht über SSH.

Problem: “_tkinter not found”

Lösung: sudo apt install python3-tk

1.

2.

3.

4.

1.

2.

3.

4.

5.

3

Cross-Compilation: Windows .exe unter Linux erstellen

Es gibt mehrere Möglichkeiten, eine Windows .exe unter Linux zu erstellen, ohne Windows zu installier‐

en.

Methode 1: Docker (Empfohlen)

Die Docker-Methode ist die zuverlässigste und reproduzierbarste Option.

Voraussetzungen

Docker installieren:

bash

 sudo apt update

 sudo apt install docker.io

 sudo systemctl start docker

 sudo systemctl enable docker

Benutzer zur docker-Gruppe hinzufügen:

bash

 sudo usermod -aG docker $USER

 # Danach neu einloggen oder:

 newgrp docker

Docker-Installation testen:

bash

 docker run hello-world

Verwendung

Navigieren Sie zum Projektordner:

bash

 cd /pfad/zum/pointcab_renamer

Führen Sie das Build-Skript aus:

bash

 ./build_windows_on_linux.sh

Die fertige .exe befindet sich in dist/PointCab_Renamer.exe

Was das Skript macht

Prüft Docker-Installation und -Status

Lädt das cdrx/pyinstaller-windows Docker-Image (beim ersten Mal)

Startet einen Container mit Windows-Umgebung

Führt PyInstaller im Container aus

Kopiert die .exe und Zusatzdateien nach dist/

Vorteile der Docker-Methode

✅ Zuverlässig und reproduzierbar

✅ Isolierte Build-Umgebung

✅ Keine manuelle Windows-Python-Installation

✅ Gleiche Ergebnisse wie auf echtem Windows

✅ Einfach in CI/CD-Pipelines integrierbar

1.

2.

3.

1.

2.

3.

1.

2.

3.

4.

5.

•

•

•

•

•

4

Troubleshooting Docker

Problem: “Permission denied” beim Docker-Aufruf

Lösung:

sudo usermod -aG docker $USER
Neu einloggen erforderlich!

Problem: Docker-Image-Download schlägt fehl

Lösung: Proxy-Einstellungen prüfen oder manuell herunterladen:

docker pull cdrx/pyinstaller-windows:python3

Problem: Container startet nicht

Lösung: Docker-Daemon prüfen:

sudo systemctl status docker
sudo systemctl restart docker

Methode 2: Wine (Fallback)

Die Wine-Methode ist weniger zuverlässig, kann aber ohne Docker verwendet werden.

Voraussetzungen

Wine installieren:

bash

 sudo dpkg --add-architecture i386

 sudo apt update

 sudo apt install wine64 wine32

Installation prüfen:

bash

 wine --version

Verwendung

Navigieren Sie zum Projektordner:

bash

 cd /pfad/zum/pointcab_renamer

Führen Sie das Build-Skript aus:

bash

 ./build_windows_wine.sh

Das Skript installiert automatisch:

- Windows-Python in Wine

- PyInstaller

1.

2.

1.

2.

3.

5

Einschränkungen der Wine-Methode

⚠️ Nicht alle Windows-Funktionen werden unterstützt

⚠️ Kann bei komplexen Abhängigkeiten fehlschlagen

⚠️ Langsamerer Build-Prozess

⚠️ Ergebnisse können von echter Windows-Build abweichen

Methode 3: GitHub Actions (Automatisiert)

Für regelmäßige Builds können Sie GitHub Actions verwenden.

Erstellen Sie .github/workflows/build.yml :

name: Build Windows Executable

on:
push:

tags:
- 'v*'

workflow_dispatch:

jobs:
build-windows:

runs-on: windows-latest
steps:

- uses: actions/checkout@v3

- name: Set up Python
uses: actions/setup-python@v4
with:

python-version: '3.10'

- name: Install dependencies
run: pip install pyinstaller

- name: Build executable
run: |

pyinstaller --onefile --windowed --name "PointCab_Renamer" `
--add-data "cluster_cleanup.txt;." `
--add-data "BENUTZERHANDBUCH.md;." `
pointcab_renamer.py

- name: Upload artifact
uses: actions/upload-artifact@v3
with:

name: PointCab_Renamer_Windows
path: |

dist/PointCab_Renamer.exe
cluster_cleanup.txt
BENUTZERHANDBUCH.md

•

•

•

•

6

Vergleich der Cross-Compilation-Methoden

Methode Zuverlässigkeit Geschwindigkeit Aufwand

Docker ⭐⭐⭐⭐⭐ ⭐⭐⭐ Niedrig

Wine ⭐⭐ ⭐⭐ Mittel

GitHub Actions ⭐⭐⭐⭐⭐ ⭐⭐⭐⭐ Niedrig

Echtes Windows ⭐⭐⭐⭐⭐ ⭐⭐⭐⭐⭐ Hoch (VM)

Empfehlung: Verwenden Sie die Docker-Methode für lokale Builds und GitHub Actions für

automatisierte Release-Builds.

Testen der Executables

Windows-Test

Kopieren Sie die .exe und cluster_cleanup.txt in einen Testordner

Doppelklicken Sie auf die .exe

Das Hauptmenü sollte erscheinen

Testen Sie alle drei Modi mit einem Testprojekt

Ubuntu-Test

Kopieren Sie das Binary und cluster_cleanup.txt in einen Testordner

Starten Sie das Programm:

bash

 ./pointcab_renamer

Das Hauptmenü sollte erscheinen

Testen Sie alle drei Modi mit einem Testprojekt

Checkliste für Tests

[] Programm startet ohne Fehler

[] Hauptmenü wird angezeigt

[] LSDX-Datei kann ausgewählt werden

[] PointCloud-Ordner wird erkannt

[] Vorschau wird korrekt angezeigt

[] Umbenennung funktioniert

[] LSDX wird aktualisiert

[] Log-Datei wird erstellt

[] Batch-Modus funktioniert

[] Merger funktioniert

1.

2.

3.

4.

1.

2.

3.

4.

•

•

•

•

•

•

•

•

•

•

7

Distribution an Mitarbeiter

Bereitstellung

Für Windows:

- Kopieren Sie diese Dateien in einen Ordner:

PointCab_Renamer.exe

cluster_cleanup.txt

BENUTZERHANDBUCH.md (oder als PDF)

Erstellen Sie ein ZIP-Archiv

Verteilen Sie über Netzlaufwerk oder E-Mail

Für Ubuntu:

- Kopieren Sie diese Dateien in einen Ordner:

pointcab_renamer

cluster_cleanup.txt

BENUTZERHANDBUCH.md

Erstellen Sie ein tar.gz-Archiv:

bash

 tar -czvf pointcab_renamer_linux.tar.gz pointcab_renamer cluster_cleanup.txt BENUTZER‐

HANDBUCH.md

Verteilen Sie über Netzlaufwerk

Empfohlene Ordnerstruktur für Mitarbeiter

PointCab_Renamer/
├── PointCab_Renamer.exe (oder pointcab_renamer für Linux)
├── cluster_cleanup.txt
├── BENUTZERHANDBUCH.md
└── logs/ (wird automatisch erstellt)

Updates verteilen

Erstellen Sie die neue Executable

Informieren Sie die Mitarbeiter über Änderungen (CHANGELOG)

Mitarbeiter ersetzen die alte .exe durch die neue

cluster_cleanup.txt kann beibehalten werden (falls angepasst)

Troubleshooting beim Build

“ModuleNotFoundError”

Lösung: Fehlende Module installieren:

pip install <modulname>

“Hidden import not found”

Lösung: Hidden imports hinzufügen:

1.

◦

◦

◦

◦

◦

2.

◦

◦

◦

◦

◦

1.

2.

3.

4.

8

pyinstaller --hidden-import=<modulname> ...

“Executable zu groß” (>100MB)

Lösung: UPX-Kompression aktivieren:

pip install upx
pyinstaller --onefile --upx-dir=/pfad/zu/upx ...

“tkinter funktioniert nicht”

Windows: tkinter ist normalerweise in Python enthalten. Reinstallieren Sie Python mit der “tcl/tk” Op‐

tion.

Ubuntu: Installieren Sie python3-tk:

sudo apt install python3-tk

Versionskontrolle

Bei jeder neuen Version:

Version im Quellcode aktualisieren (VERSION = "4.2" etc.)

CHANGELOG.md aktualisieren

Neue Builds für Windows und Ubuntu erstellen

Builds testen

Im Git-Repository taggen:

bash

 git tag -a v4.2 -m "Version 4.2"

 git push origin v4.2

Troubleshooting: Docker-Probleme

Docker ist nicht installiert

Ubuntu/Debian:

sudo apt update
sudo apt install docker.io
sudo systemctl start docker
sudo systemctl enable docker
sudo usermod -aG docker $USER
Dann neu einloggen oder: newgrp docker

Fedora/RHEL:

1.

2.

3.

4.

5.

9

sudo dnf install docker
sudo systemctl start docker

Docker-Daemon startet nicht

Symptom: Cannot connect to the Docker daemon

Lösungen:

Service starten:

bash

 sudo systemctl start docker

Status prüfen:

bash

 sudo systemctl status docker

Logs prüfen:

bash

 sudo journalctl -u docker.service

Berechtigung verweigert

Symptom: permission denied while trying to connect to the Docker daemon

Lösung: Benutzer zur Docker-Gruppe hinzufügen:

sudo usermod -aG docker $USER
Danach neu einloggen

Oder mit sudo ausführen:

sudo ./build_windows_on_linux.sh

Docker in Container-Umgebung (Docker-in-Docker)

Problem: Docker kann nicht in unprivilegierten Containern laufen.

Lösungen:

Wine-Alternative verwenden:

bash

 ./build_windows_wine.sh

Auf Host-System bauen

GitHub Actions nutzen (siehe .github/workflows/)

Container mit --privileged starten (nicht empfohlen für Produktion)

WSL2 unter Windows

Problem: Docker-Befehle schlagen in WSL2 fehl.

Lösung:

1. Docker Desktop für Windows installieren

1.

2.

3.

1.

2.

3.

4.

10

2. In Docker Desktop: Settings → Resources → WSL Integration aktivieren

3. WSL-Distribution auswählen

Docker-Image Download schlägt fehl

Symptom: Error pulling image oder Timeout

Lösungen:

Internetverbindung prüfen

Proxy konfigurieren:

bash

 export HTTP_PROXY=http://proxy:port

 export HTTPS_PROXY=http://proxy:port

Manueller Download:

bash

 sudo docker pull cdrx/pyinstaller-windows:python3

Vergleich der Build-Methoden

Methode Plattform Vorteile Nachteile

build_windows.bat Windows Nativ, zuverlässig Braucht Windows

build_windows_on_lin

ux.sh

Linux + Docker Cross-compilation Docker erforderlich

build_windows_wine.s

h

Linux + Wine Kein Docker nötig Weniger zuverlässig

GitHub Actions Cloud Automatisiert Braucht GitHub-Repo

Empfehlung: Für zuverlässige Windows-Builds verwenden Sie:

1. Native Windows (build_windows.bat) - Am zuverlässigsten

2. Docker auf Linux (build_windows_on_linux.sh) - Gut für CI/CD

3. GitHub Actions - Automatisiert bei jedem Push/Release

PointCab Renamer Deployment Guide v4.1.2 - © 2026

1.

2.

3.

11

	PointCab Renamer - Deployment-Anleitung
	Build-Status (Testergebnisse 2026-01-16)
	Übersicht
	Voraussetzungen
	Benötigte Software
	Installation der Voraussetzungen
	Windows
	Ubuntu

	Windows-Build (.exe)
	Automatisch (empfohlen)
	Manuell
	PyInstaller-Optionen erklärt
	Bekannte Probleme unter Windows

	Ubuntu-Build (Binary)
	Automatisch (empfohlen)
	Manuell
	Bekannte Probleme unter Ubuntu

	Cross-Compilation: Windows .exe unter Linux erstellen
	Methode 1: Docker (Empfohlen)
	Voraussetzungen
	Verwendung
	Was das Skript macht
	Vorteile der Docker-Methode
	Troubleshooting Docker

	Methode 2: Wine (Fallback)
	Voraussetzungen
	Verwendung
	Einschränkungen der Wine-Methode

	Methode 3: GitHub Actions (Automatisiert)
	Vergleich der Cross-Compilation-Methoden

	Testen der Executables
	Windows-Test
	Ubuntu-Test
	Checkliste für Tests

	Distribution an Mitarbeiter
	Bereitstellung
	Empfohlene Ordnerstruktur für Mitarbeiter
	Updates verteilen

	Troubleshooting beim Build
	“ModuleNotFoundError”
	“Hidden import not found”
	“Executable zu groß” (>100MB)
	“tkinter funktioniert nicht”

	Versionskontrolle
	Troubleshooting: Docker-Probleme
	Docker ist nicht installiert
	Docker-Daemon startet nicht
	Berechtigung verweigert
	Docker in Container-Umgebung (Docker-in-Docker)
	WSL2 unter Windows
	Docker-Image Download schlägt fehl

	Vergleich der Build-Methoden

