
Sicherheitshinweise - LibreBooking n8n Node

Dieses Dokument erklärt die npm audit Vulnerabilities und wie man damit umgeht.

Inhaltsverzeichnis

Übersicht der Vulnerabilities

Warum diese Vulnerabilities existieren

Risikoeinschätzung

Empfehlungen

Wie man sie beheben kann

Produktionsumgebungen

Übersicht der Vulnerabilities

Beim Ausführen von npm audit werden möglicherweise folgende Vulnerabilities angezeigt:

Critical: form-data

form-data <4.0.1
Severity: critical
Prototype Pollution in form-data
https://github.com/advisories/GHSA-xxx

Moderate: lodash

lodash <4.17.21
Severity: moderate
Prototype Pollution in lodash
https://github.com/advisories/GHSA-xxx

Warum diese Vulnerabilities existieren

Diese Vulnerabilities kommen nicht direkt aus diesem Projekt, sondern sind transitive Depend‐

encies von n8n-workflow und n8n-core .

Dependency-Kette:

n8n-nodes-librebooking
 └── n8n-workflow (devDependency für Typen)
 └── axios
 └── form-data (vulnerable version)
 └── lodash (vulnerable version)

•

•

•

•

•

•

1

Wichtig zu verstehen:

n8n-workflow ist nur als devDependency und peerDependency deklariert

In Produktion verwendet n8n seine eigene n8n-workflow Version

Die vulnerable Dependencies werden nur beim Entwickeln installiert

Diese Package werden nicht in das finale dist/ Verzeichnis gebündelt

Risikoeinschätzung

Für dieses Projekt: NIEDRIGES RISIKO

Aspekt Risiko Begründung

Entwicklung Niedrig form-data/lodash werden

nicht direkt verwendet

Produktion Sehr niedrig Keine transtiven Dependen‐

cies werden deployed

n8n Runtime Abhängig von n8n n8n selbst muss die Vulnerab‐

ilities beheben

Warum niedriges Risiko:

form-data Vulnerability:

- Betrifft nur das Parsen von multipart/form-data

- Dieser Node verwendet keine File-Uploads über form-data

- Die LibreBooking API verwendet JSON für alle Requests

lodash Vulnerability:

- Betrifft _.set() und _.setWith() Funktionen

- Dieser Node verwendet keine direkten lodash Aufrufe

- Die Vulnerability erfordert Angreifer-kontrollierten Input

Empfehlungen

Für Entwickler:

Warnungen ignorieren (wenn nicht kritisch):

bash

 npm install --ignore-scripts

Audit bei npm install deaktivieren:

```bash

# Einmalig:

npm install –no-audit

1. 

2. 

3. 

4. 

1. 

2. 

1. 

2. 

2



# Permanent via .npmrc:

echo “audit=false” >> .npmrc

```

Overrides verwenden (in package.json):

json

 "overrides": {

 "form-data": "^4.0.1",

 "lodash": "^4.17.21"

 }

Für Produktionsumgebungen:

n8n aktuell halten: Die n8n-Entwickler aktualisieren regelmäßig ihre Dependencies

Nur vertrauenswürdige Inputs: Keine ungeprüften Daten an die Nodes übergeben

Network Isolation: n8n Container im isolierten Netzwerk betreiben

Wie man sie beheben kann

Option 1: Overrides in package.json (empfohlen)

Die package.json enthält bereits Overrides für bekannte Vulnerabilities:

"overrides": {
"form-data": "^4.0.1",
"lodash": "^4.17.21"

}

Option 2: npm audit fix (begrenzt)

Automatische Fixes (nur kompatible Updates)
npm audit fix

Force Fixes (VORSICHT: kann Breaking Changes einführen)
npm audit fix --force

Hinweis: npm audit fix kann transitive Dependencies nur begrenzt beheben.

Option 3: Update-Skript verwenden

./update-dependencies.sh

Das Skript:

- Führt npm audit fix aus

- Aktualisiert alle Dependencies

- Testet ob alles funktioniert

- Gibt einen Report

Option 4: Resolutions (für yarn/pnpm)

Wenn Sie yarn statt npm verwenden:

1.

1.

2.

3.

3

"resolutions": {
"form-data": "^4.0.1",
"lodash": "^4.17.21"

}

Produktionsumgebungen

Best Practices:

Docker Image aktuell halten:

bash

 docker pull n8nio/n8n:latest

Regelmäßige Updates:

bash

 docker compose pull

 docker compose up -d

Security Scanning:

bash

 # Image auf Vulnerabilities prüfen

 docker scan n8nio/n8n:latest

 # Oder mit Trivy:

 trivy image n8nio/n8n:latest

Netzwerk-Isolation:

- n8n nicht direkt im Internet exponieren

- Reverse Proxy mit TLS verwenden

- Firewall-Regeln setzen

Zugriffskontrollen:

- Starke Passwörter verwenden

- Basic Auth oder OAuth aktivieren

- API-Keys für LibreBooking sicher speichern

Sicherheits-Checkliste:

[] n8n Version aktuell?

[] Docker Image aktuell?

[] TLS/HTTPS aktiviert?

[] Starke Passwörter?

[] Netzwerk isoliert?

[] Regelmäßige Backups?

Weiterführende Links

n8n Security Best Practices (https://docs.n8n.io/hosting/security/)

npm audit Documentation (https://docs.npmjs.com/cli/v8/commands/npm-audit)

1.

2.

3.

4.

5.

•

•

•

•

•

•

•

•

4

https://docs.n8n.io/hosting/security/
https://docs.n8n.io/hosting/security/
https://docs.npmjs.com/cli/v8/commands/npm-audit
https://docs.npmjs.com/cli/v8/commands/npm-audit

OWASP Dependency Check (https://owasp.org/www-project-dependency-check/)

Snyk Vulnerability Database (https://snyk.io/vuln/)

Meldung von Sicherheitsproblemen

Wenn Sie eine Sicherheitslücke direkt in diesem Projekt (nicht in Dependencies) finden:

Nicht öffentlich melden (kein GitHub Issue)

Kontaktieren Sie uns direkt per E-Mail

Geben Sie Zeit für einen Fix bevor öffentliche Disclosure

Letzte Aktualisierung: Januar 2026

•

•

1.

2.

3.

5

https://owasp.org/www-project-dependency-check/
https://owasp.org/www-project-dependency-check/
https://snyk.io/vuln/
https://snyk.io/vuln/

	Sicherheitshinweise - LibreBooking n8n Node
	Inhaltsverzeichnis
	Übersicht der Vulnerabilities
	Critical: form-data
	Moderate: lodash

	Warum diese Vulnerabilities existieren
	Dependency-Kette:
	Wichtig zu verstehen:

	Risikoeinschätzung
	Für dieses Projekt: NIEDRIGES RISIKO
	Warum niedriges Risiko:

	Empfehlungen
	Für Entwickler:
	Für Produktionsumgebungen:

	Wie man sie beheben kann
	Option 1: Overrides in package.json (empfohlen)
	Option 2: npm audit fix (begrenzt)
	Option 3: Update-Skript verwenden
	Option 4: Resolutions (für yarn/pnpm)

	Produktionsumgebungen
	Best Practices:
	Sicherheits-Checkliste:

	Weiterführende Links
	Meldung von Sicherheitsproblemen

