
Sicherheitshinweise - LibreBooking n8n Node

Dieses Dokument erklärt die npm audit Vulnerabilities und wie man damit umgeht.
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Übersicht der Vulnerabilities

Beim Ausführen von npm audit  werden möglicherweise folgende Vulnerabilities angezeigt:

Critical: form-data

form-data <4.0.1
Severity: critical
Prototype Pollution in form-data
https://github.com/advisories/GHSA-xxx

Moderate: lodash

lodash <4.17.21
Severity: moderate
Prototype Pollution in lodash
https://github.com/advisories/GHSA-xxx

Warum diese Vulnerabilities existieren

Diese Vulnerabilities kommen nicht direkt aus diesem Projekt, sondern sind transitive Depend‐

encies von n8n-workflow  und n8n-core .

Dependency-Kette:

n8n-nodes-librebooking
  └── n8n-workflow (devDependency für Typen)
        └── axios
              └── form-data (vulnerable version)
        └── lodash (vulnerable version)
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Wichtig zu verstehen:

n8n-workflow ist nur als devDependency  und peerDependency  deklariert

In Produktion verwendet n8n seine eigene n8n-workflow Version

Die vulnerable Dependencies werden nur beim Entwickeln installiert

Diese Package werden nicht in das finale dist/ Verzeichnis gebündelt

Risikoeinschätzung

Für dieses Projekt: NIEDRIGES RISIKO

Aspekt Risiko Begründung

Entwicklung Niedrig form-data/lodash werden

nicht direkt verwendet

Produktion Sehr niedrig Keine transtiven Dependen‐

cies werden deployed

n8n Runtime Abhängig von n8n n8n selbst muss die Vulnerab‐

ilities beheben

Warum niedriges Risiko:

form-data Vulnerability:

- Betrifft nur das Parsen von multipart/form-data

- Dieser Node verwendet keine File-Uploads über form-data

- Die LibreBooking API verwendet JSON für alle Requests

lodash Vulnerability:

- Betrifft _.set()  und _.setWith()  Funktionen

- Dieser Node verwendet keine direkten lodash Aufrufe

- Die Vulnerability erfordert Angreifer-kontrollierten Input

Empfehlungen

Für Entwickler:

Warnungen ignorieren (wenn nicht kritisch):

bash

   npm install --ignore-scripts

Audit bei npm install deaktivieren:

```bash

# Einmalig:

npm install –no-audit
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# Permanent via .npmrc:

echo “audit=false” >> .npmrc

```

Overrides verwenden (in package.json):

json

   "overrides": {

     "form-data": "^4.0.1",

     "lodash": "^4.17.21"

   }

Für Produktionsumgebungen:

n8n aktuell halten: Die n8n-Entwickler aktualisieren regelmäßig ihre Dependencies

Nur vertrauenswürdige Inputs: Keine ungeprüften Daten an die Nodes übergeben

Network Isolation: n8n Container im isolierten Netzwerk betreiben

Wie man sie beheben kann

Option 1: Overrides in package.json (empfohlen)

Die package.json enthält bereits Overrides für bekannte Vulnerabilities:

"overrides": {
"form-data": "^4.0.1",
"lodash": "^4.17.21"

}

Option 2: npm audit fix (begrenzt)

# Automatische Fixes (nur kompatible Updates)
npm audit fix

# Force Fixes (VORSICHT: kann Breaking Changes einführen)
npm audit fix --force

Hinweis: npm audit fix  kann transitive Dependencies nur begrenzt beheben.

Option 3: Update-Skript verwenden

./update-dependencies.sh

Das Skript:

- Führt npm audit fix  aus

- Aktualisiert alle Dependencies

- Testet ob alles funktioniert

- Gibt einen Report

Option 4: Resolutions (für yarn/pnpm)

Wenn Sie yarn statt npm verwenden:

1. 

1. 
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3. 
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"resolutions": {
"form-data": "^4.0.1",
"lodash": "^4.17.21"

}

Produktionsumgebungen

Best Practices:

Docker Image aktuell halten:

bash

   docker pull n8nio/n8n:latest

Regelmäßige Updates:

bash

   docker compose pull

   docker compose up -d

Security Scanning:

bash

   # Image auf Vulnerabilities prüfen

   docker scan n8nio/n8n:latest

   # Oder mit Trivy:

   trivy image n8nio/n8n:latest

Netzwerk-Isolation:

- n8n nicht direkt im Internet exponieren

- Reverse Proxy mit TLS verwenden

- Firewall-Regeln setzen

Zugriffskontrollen:

- Starke Passwörter verwenden

- Basic Auth oder OAuth aktivieren

- API-Keys für LibreBooking sicher speichern

Sicherheits-Checkliste:

[ ] n8n Version aktuell?

[ ] Docker Image aktuell?

[ ] TLS/HTTPS aktiviert?

[ ] Starke Passwörter?

[ ] Netzwerk isoliert?

[ ] Regelmäßige Backups?

Weiterführende Links

n8n Security Best Practices (https://docs.n8n.io/hosting/security/)

npm audit Documentation (https://docs.npmjs.com/cli/v8/commands/npm-audit)
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OWASP Dependency Check (https://owasp.org/www-project-dependency-check/)

Snyk Vulnerability Database (https://snyk.io/vuln/)

Meldung von Sicherheitsproblemen

Wenn Sie eine Sicherheitslücke direkt in diesem Projekt (nicht in Dependencies) finden:

Nicht öffentlich melden (kein GitHub Issue)

Kontaktieren Sie uns direkt per E-Mail

Geben Sie Zeit für einen Fix bevor öffentliche Disclosure

Letzte Aktualisierung: Januar 2026
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