Sicherheitshinweise - LibreBooking n8n Node

Dieses Dokument erklart die npm audit Vulnerabilities und wie man damit umgeht.

Inhaltsverzeichnis

Ubersicht der Vulnerabilities

e Warum diese Vulnerabilities existieren
¢ Risikoeinschatzung

¢ Empfehlungen

* Wie man sie beheben kann

¢ Produktionsumgebungen

Ubersicht der Vulnerabilities
Beim Ausfuhren von npm audit werden moglicherweise folgende Vulnerabilities angezeigt:

Critical: form-data

form-data <4.0.1

Severity: critical

Prototype Pollution in form-data
https://github.com/advisories/GHSA-xxx

Moderate: lodash

lodash <4.17.21

Severity: moderate

Prototype Pollution in lodash
https://github.com/advisories/GHSA-xxx

Warum diese Vulnerabilities existieren

Diese Vulnerabilities kommen nicht direkt aus diesem Projekt, sondern sind transitive Depend-
encies von n8n-workflow und n8n-core .

Dependency-Kette:

n8n-nodes-1librebooking
L— n8n-workflow (devDependency fiir Typen)
L— axios
L— form-data (vulnerable version)
L— lodash (vulnerable version)

Wichtig zu verstehen:

1. n8n-workflow ist nur als devDependency und peerDependency deklariert
2. In Produktion verwendet n8n seine eigene n8n-workflow Version
3. Die vulnerable Dependencies werden nur beim Entwickeln installiert

4. Diese Package werden nicht in das finale dist/ Verzeichnis geblUndelt

Risikoeinschatzung

Fur dieses Projekt: NIEDRIGES RISIKO

Aspekt Risiko Begriindung

Entwicklung Niedrig form-data/lodash werden
nicht direkt verwendet

Produktion Sehr niedrig Keine transtiven Dependen-
cies werden deployed

n8n Runtime Abhangig von n8n n8n selbst muss die Vulnerab-
ilities beheben

Warum niedriges Risiko:

1. form-data Vulnerability:
- Betrifft nur das Parsen von multipart/form-data
- Dieser Node verwendet keine File-Uploads tber form-data
- Die LibreBooking APl verwendet JSON fur alle Requests

2. lodash Vulnerability:
- Betrifft _.set() und _.setWith() Funktionen
- Dieser Node verwendet keine direkten lodash Aufrufe
- Die Vulnerability erfordert Angreifer-kontrollierten Input

Empfehlungen

Fur Entwickler:

1. Warnungen ignorieren (wenn nicht kritisch):
bash
npm install --ignore-scripts

2. Audit bei npm install deaktivieren:
“““bash
Einmalig:
npm install -no-audit

Permanent via .npmrc:
echo “audit=false” >> .npmrc

1. Overrides verwenden (in package.json):
json
"overrides": {
"form-data": ""4.0.1",
"lodash": "~4.17.21"
}

Fur Produktionsumgebungen:

1. n8n aktuell halten: Die n8n-Entwickler aktualisieren regelmafig ihre Dependencies
2. Nur vertrauenswiirdige Inputs: Keine ungepriften Daten an die Nodes Ubergeben
3. Network Isolation: n8n Container im isolierten Netzwerk betreiben

Wie man sie beheben kann

Option 1: Overrides in package.json (empfohlen)

Die package.json enthalt bereits Overrides flr bekannte Vulnerabilities:

"overrides": {
"form-data": ""4.0.1",
"lodash": "74.17.21"

¥

Option 2: npm audit fix (begrenzt)

Automatische Fixes (nur kompatible Updates)

npm audit fix

Force Fixes (VORSICHT: kann Breaking Changes einfiihren)
npm audit fix --force

Hinweis: npm audit fix kann transitive Dependencies nur begrenzt beheben.

Option 3: Update-Skript verwenden
./update-dependencies.sh

Das Skript:

- FUhrt npm audit fix aus

- Aktualisiert alle Dependencies
- Testet ob alles funktioniert

- Gibt einen Report

Option 4: Resolutions (fur yarn/pnpm)

Wenn Sie yarn statt npm verwenden:

"resolutions": {
"form-data": ""4.0.1",
"lodash": "~4.17.21"

}

Produktionsumgebungen

Best Practices:

1. Docker Image aktuell halten:
bash
docker pull n8nio/n8n:latest

2. RegelmaRBige Updates:
bash
docker compose pull

docker compose up -d

3. Security Scanning:
bash
Image auf Vulnerabilities prifen
docker scan n8nio/n8n:latest
Oder mit Trivy:
trivy image n8nio/n8n:latest

4. Netzwerk-Isolation:
- n8n nicht direkt im Internet exponieren
- Reverse Proxy mit TLS verwenden
- Firewall-Regeln setzen

5. Zugriffskontrollen:
- Starke Passworter verwenden
- Basic Auth oder OAuth aktivieren
- API-Keys fur LibreBooking sicher speichern

Sicherheits-Checkliste:

e [1 n8n Version aktuell?

e [] Docker Image aktuell?
e [] TLS/HTTPS aktiviert?

* [] Starke Passworter?

e [] Netzwerk isoliert?

* [] RegelmaRige Backups?

Weiterfuhrende Links

* n8n Security Best Practices (https://docs.n8n.io/hosting/security/)

¢ npm audit Documentation (https://docs.npmjs.com/cli/v8/commands/npm-audit)

https://docs.n8n.io/hosting/security/
https://docs.n8n.io/hosting/security/
https://docs.npmjs.com/cli/v8/commands/npm-audit
https://docs.npmjs.com/cli/v8/commands/npm-audit

* OWASP Dependency Check (https://owasp.org/www-project-dependency-check/)
¢ Snyk Vulnerability Database (https://snyk.io/vuln/)

Meldung von Sicherheitsproblemen
Wenn Sie eine Sicherheitslicke direkt in diesem Projekt (nicht in Dependencies) finden:

1. Nicht o6ffentlich melden (kein GitHub Issue)
2. Kontaktieren Sie uns direkt per E-Mail
3. Geben Sie Zeit fur einen Fix bevor offentliche Disclosure

Letzte Aktualisierung: Januar 2026

https://owasp.org/www-project-dependency-check/
https://owasp.org/www-project-dependency-check/
https://snyk.io/vuln/
https://snyk.io/vuln/

	Sicherheitshinweise - LibreBooking n8n Node
	Inhaltsverzeichnis
	Übersicht der Vulnerabilities
	Critical: form-data
	Moderate: lodash

	Warum diese Vulnerabilities existieren
	Dependency-Kette:
	Wichtig zu verstehen:

	Risikoeinschätzung
	Für dieses Projekt: NIEDRIGES RISIKO
	Warum niedriges Risiko:

	Empfehlungen
	Für Entwickler:
	Für Produktionsumgebungen:

	Wie man sie beheben kann
	Option 1: Overrides in package.json (empfohlen)
	Option 2: npm audit fix (begrenzt)
	Option 3: Update-Skript verwenden
	Option 4: Resolutions (für yarn/pnpm)

	Produktionsumgebungen
	Best Practices:
	Sicherheits-Checkliste:

	Weiterführende Links
	Meldung von Sicherheitsproblemen

